Capitolo 4: I prodotti notevoli

 
I cosiddetti "prodotti notevoli" sono delle particolari moltiplicazioni tra polinomi che, una volta imparate, si possono eseguire trovando il risultato finale saltando i passaggi intermedi (che sono ovviamente sempre uguali).
 
Ma vedrete che è ancora più importante (anzi indispensabile) saper riconoscere che un certo polinomio è il risultato di un prodotto notevole: in questo modo potremo  fare il processo inverso e ottenere la famigerata FATTORIZZAZIONE
 
Il più famoso dei prodotti notevoli è
 

4.1    somma per differenza

 
(A + B)(A -B)      ma io preferisco usare i mie soliti simboli per concentrarci sul metodo logico
 
 

I due termini intermedi sono uguali perchè non conta l'ordine in cui sono scritti ( ZY = YX ) ed avendo segno opposto si annullano.

Avendo usato dei simboli al posto di numeri e lettere è ovvio che ciò avviene SEMPRE tutte le volte che moltiplico due polinomi che sono la somma e la differenza degli stessi termini.

 

Da qui la regola

  • 4.1-1    il prodotto della somma per la differenza di due "oggetti" è un BINOMIO che si ottiene elevandoli entrambi al quadrato e mettendo in mezzo il segno "meno"

 

Come potete notare sono stato volutamente molto generico proprio perchè le regole devono avere un valore generale, cioè applicabile sempre (con la dovuta attenzione). Infatti: 

Allora: come riconosciamo questo prodotto notevole e sopratutto come riconosciamo il nostro TONDINO e il nostro QUADRATINO?

E' facile: i due polinomi devono contenere gli stessi monomi identici ma con segni diversi tra la prima e la seconda parentesi, e proprio queste diversità ci consentono di stabilire chi fa parte del TONDINO e chi del QUADRATINO. Tutti i monomi che compaiono nelle due parentesi collo stesso segno fanno parte del TONDINO, tutti quelli che hanno segni diversi entrano nel QUADRATINO. L'unica accortezza sta nel fatto che i segni dei monomi che vanno nel QUADRATINO devono essere quelli che hanno nella stessa parentesi (o la prima o la seconda).

 

Vediamolo con un esempio grafico ( in nero i monomi positivi, in rosso i monomi negativi):

 

 

ora partendo dal primo monomio chiediamoci

A    tra la prima e la seconda parentesi "cambia" segno?    NO    >   TONDINO

B    tra la prima e la seconda parentesi "cambia" segno?    SI      >    QUADRATINO

C    tra la prima e la seconda parentesi "cambia" segno?    SI     >    QUADRATINO

D    tra la prima e la seconda parentesi "cambia" segno?    NO   >    TONDINO

E    tra la prima e la seconda parentesi "cambia" segno?    NO    >    TONDINO

F    tra la prima e la seconda parentesi "cambia" segno?    NO    >    TONDINO

quindi:

 

 

Se non sono stato abbastanza chiaro SCRIVETEMELO !!!

carlogiannini@email.it

 

    

4.2    quadrato di binomio

 

 

 

Vediamo alcuni esempi e state molto attenti ai segni

 

 

Come vedete i due quadrati sono sempre POSITIVI perchè (+)(+)=(+) ma anche (-)(-)=(+)

Invece il DOPPIO PRODOTTO è POSITIVO se il binomio è "SOMMATO", invece è NEGATIVO se il bonomio è "SOTTRATTO"

 

Quindi possiamo scrivere la regola del quadrato di un binomio:

 

  • 4.2-1    il quadrato di un BINOMIO è un TRINOMIO formato da
  1. quadrato del primo monomio (sempre positivo)
  2. quadrato del secondo monomio (sempre positivo)
  3. e dal doppio prodotto dei due monomi (prende il segno che c'è nel binomio)

 

Come vedete io faccio (e mi raccomando che facciate anche voi) PRIMA i due quadrati dei due monomi che sono sempre positivi e DOPO il doppio prodotto per evitare il più classico e frequente degli errori che è questo:

 

 

 

4.3    cubo di binomio

 

 

 

 

 

IN COSTRUZIONE   ........................   TORNA A TROVARCI   .........
 
 
capitolo 1         capitolo 2         capitolo 3         capitolo 4